

1.2316

Quality	X 38CrMo16	Supply conditions:
According to standards	UNI EN ISO 4957: 2002	Quenching and tempering
Number	1.2316	

Chemical composition									
Si%	Mn%	Р%	S%	Cr%	Mo%	Ni%	Deviations		
max	max	max	max			max	allowed		
1,00	1,50	0,030	0,030	15,50-17,50	0,80-1,30	1,00	for analysis		
± 0.05	± 0.04	+ 0.005	+ 0.005	± 0.15	± 0.05	± 0.07	product		
	Si% max 1,00	Si% Mn% max max 1,00 1,50	Si% Mn% P% max max max 1,00 1,50 0,030	Si% Mn% P% S% max max max max 1,00 1,50 0,030 0,030	Si% Mn% P% S% Cr% max max max max 1,00 1,50 0,030 0,030 15,50-17,50	Si% Mn% P% S% Cr% Mo% max max max 1,50 0,030 0,030 15,50-17,50 0,80-1,30	Si% Mn% P% S% Cr% Mo% Ni% max max max max 1,00 1,50 0,030 0,030 15,50-17,50 0,80-1,30 1,00		

Product deviations are allowed

On request, sulphur content can be increased and nickel content can be omitted

Hat forming	Ctropo rolinging	Ouenching 1)	Tomporing 1)	Ouanah	in a 2)	Tompor	in a 2)
Hot-forming	Stress-relieving after machining and before quenching	Quenching 1)	Tempering 1)	Quench	ing 2)	Temper	ing ²
1050-850		1000-1050	550-650	1000-10	50	170-210	
		oil or polymer	calm air	calm or f	orced air	calm air	
		s.b. (500-550)	minimum 2 cycles			minimun	n 2 cycles
Soft annealing	Stress-relieving	Spheroidizing	End quench hardenability test	Pre-heat welding	ting		elieving
790-840	50° under the			250-300		650 furn	ace cooling
furnace cooling	temperature of			AC1	Ac3	Ms	Mf
(HB max 240)	tempering			810	900	260	40

S.	b.	=	sal	t	ba	th

Mechanical and	d physi	cal prop	erties									
Table of temperin	g after qu	enching a	at 1040 °C	in oil								
НВ	468	468	455	442	432	432	432	432	442	448	371	301
HRC	49	49	48	47	46	46	46	46	47	47,5	40	32
N/mm ²	1700	1700	1640	1580	1520	1520	1520	1520	1580	1610	1250	1010
Tempering at °C	50	100	150	200	250	300	350	400	450	500	550	600
Thermal expansion	n 10	-6 • K -1			10.7	11.7	11.7	11.7	11.8	11.9	12.4	12.9
Modulus of elastic	city lon	gitudinal	GPa	223	218	212	205	197				
Modulus of elastic	city tan	gential	GPa	85	84	81	79	75				
Testing at °C	-			20	100	200	300	400	500	600	700	800

Specific heat capacity	Density	Thermal conductivity	Specific electric resist.	Electrical conductivity
J/(Kg•K)	Kg/dm ³	W/(m•K)	Ohm•mm²/m	Siemens•m/mm ²
430	7.71	15	0.80	1.25

Cold-work tool steels

- high alloyed martensitic steel grade
- particularly suitable for moulds for the plastic industry, especially if plastics have strong abrasive and corrosive powers
- very stable dimensionally during hardening; very limited deformations, even by cooling in polymer
- excellent machinability; after this operation, it is very suitable to polishing
- suitable for the construction of those mechanical components that have to deal with very hard substances, able to remove small quantities of base material
- applications: moulds for corrosive plastic materials, moulds for the automotive industry (head lamp components), moulds for rubber pressing